
Proceedings of the ASME 2017 Dynamic Systems and Control Conference
DSCC2017

October 11-13, 2017, Tysons, Virginia, USA

DSCC2017-5228

DRAFT: NEUROADAPTIVE CONTROL FOR TRAJECTORY TRACKING OF
INDIRECT DRIVE ROBOTS

Yu Zhao
Department of Mechanical Engineering

University of California
Berkeley, California

Email: yzhao334@berkeley.edu

Xiaowen Yu
Department of Mechanical Engineering

University of California
Berkeley, California

Email: aliceyu@berkeley.edu

Masayoshi Tomizuka
Department of Mechanical Engineering

University of California
Berkeley, California

Email: tomizuka@me.berkeley.edu

ABSTRACT
Most industrial robots are indirect drive robots, which uti-

lize low torque and high speed motors. Indirect drive robots have
gear reducers between the motors and links. Due to the flexibil-
ity of transmission units, it is difficult to achieve high accuracy
for trajectory tracking. In this paper, a neuroadaptive control,
which is essentially a neural network (NN) based adaptive back-
stepping control approach, is proposed to deal with this problem.
The stability of the proposed approach is analysed using Lya-
punov stability theory. A data-driven approach is also proposed
for the training of the neural network. The effectiveness of the
proposed controller is verified by simulation of both single joint
and 6-axis industrial robots.

1 INTRODUCTION
Today, most industrial robots are indirect drive for high

power/weight ratio and low cost. However, it is hard for in-
direct drive robots to achieve high trajectory tracking accuracy
because of the flexibilities in transmission units in each robot
joint [1]. Such flexibilities introduce time-varying mismatches
between the positions of actuators and the driven links, which
will result in degradation of the tracking performance [2].

Several control approaches have been proposed for robots
with flexible transmission units. Some of these approaches re-
quire an accurate robot dynamic model: e.g. feedback lineariza-
tion [3], singular perturbation based approach [4], and the model
based feedforward control [5]. Other approaches are model free
approaches: e.g. iterative learning control [6] and nonparametric

learning control based on Neural Network (NN) techniques [7].
The model based controller relies on a good model. If the

model is either too simple to accommodate all complex charac-
teristics in the robots, or too complicated to identify actual dy-
namics and parameters, the performance of the controller will
be poor due to modeling errors. On the other hand, model free
approaches can provide reasonable performance most of time be-
cause no analytic model is required except that the tuning of the
controller may be time consuming or data inefficient. For exam-
ple, iterative learning control may require many iterations before
a good control input can be learned for a specific trajectory while
NN always requires large data set for training the controller.

Actuator

Driven Link

Tool Center Point (TCP)

Payload
Transmission

Unit
6-Axis Industrial

Robot

Figure 1. 6-axis indirect drive robot

1

To address such problems, in this paper, a neuroadaptive
controller, which is essentially a neural network based adaptive
backstepping control is proposed. Instead of using only dynamic
model of the robot, an auxiliary model parameterized by a neu-
ral network is used to approximate the modeling error. The con-
troller is designed in two stages: an off-line training stage and an
online adaptive training stage. To train for a specific trajectory,
it takes only at most two iterations until convergence and only
requires the data from the first iteration.

This paper is organized as follows: the proposed controller
design is introduced in Section 2; the two stage neural network
training is introduced in Section 3; stability analysis is presented
in Section 4; the controller is implemented and evaluated by sim-
ulation in Section 5; Section 6 concludes the paper.

2 NEUROADAPTIVE CONTROL OF INDIRECT DRIVE
ROBOTS

2.1 Dynamical System Model
For a N DOF industrial robot, there are 2N generalized co-

ordinates [2, 8, 9]:

Θ =
[
q θ
]T ∈ R2N

where q ∈ RN refers to the link positions, and θ ∈ RN refers to
the actuator positions.

The dynamic model of the system is

M(q)q̈+C(q, q̇)q̇+g(q) = d`

+K(R−1
θ−q)+D(R−1

θ̇− q̇) (1a)

Bθ̈ =τ+dm

+R−1 [K(q−R−1
θ)+D(q̇−R−1

θ̇)
]

(1b)

where M(q) ∈ RN×N , B ∈ RN×N are the inertia matrices for link
motion and actuator motion respectively; C(q, q̇)q̇∈RN is Corio-
lis and centrifugal force; g(q)∈RN is the gravity term; τ∈RN is
torque generated by actuators; K ∈ RN×N and D ∈ RN×N are di-
agonal matrices representing stiffness and damping of the trans-
mission units respectively; R ∈ RN×N is diagonal matrix repre-
senting gear ratio; d` ∈RN and dm ∈RN are disturbances applied
the links and actuators respectively. The input to the system is
the actuator torque τ, and output of the system is the link position
q.

The disturbances d` and dm include complex friction, trans-
mission error mentioned in [10,11], and actuator-link interaction
mentioned in [2]. It is difficult to build a parametric model for
all the disturbances, but in general, they could be modelled as
d` ≈ d`(q, q̇,θ, θ̇), dm ≈ dm(q, q̇,θ, θ̇).

2.2 Backstepping Control
Backstepping control, as shown in [12], is a control method

that is developed for nonlinear dynamical systems with recursive
structure. The design of backstepping control involves designing
controllers that progressively stabilize a series of subsystems.

An indirect drive robot has such kind of recursive struc-
ture. The first subsystem is expressed as (1a), and the second
subsystem is expressed as (1b). Design of backstepping con-
trol of indirect drive robot consists of two steps. The first step
designs the control law for (1a) with the transmission torque
y = K(R−1θ− q)+D(R−1θ̇− q̇) as input, and the second step
designs the control law for (1b) with motor torque τ as input.
In the first step, the designed controller stabilizes the trajectory
tracking error to 0. In the second step, the designed controller
stabilizes the transmission torque error to 0.

First step: Letting the reference trajectory of an indirect
drive robot be qd , q̇d , q̈d , the trajectory tracking error is defined
as

e = qd−q (2)

According to [13], a filtered-error term r can be defined as

r = ė+Kpe (3)

where Kp ∈RN×N is a positive definite gain matrix with the min-
imum singular value σmin(Kp) > 0. Stabilizing tracking error e
is equivalent to stabilizing filtered error r since

‖e‖ ≤ ‖r‖
σmin(Kp)

(4)

In order to stabilize tracking error e, a desired transmission
torque yd can be designed as [13]

yd = Krr+M(q)(q̈d +Kpė)+C(q, q̇)(q̇d +Kpe)+g(q)−d`

where Kr ∈ RN×N is a positive definite gain matrix.
Second step: The error between desired transmission torque

yd and the actual interaction torque through flexible transmission
unit y is

s = yd− y (5)

In order to design a control law that stabilize the transmis-
sion torque error s to 0, we first construct a Lyapunov function
L,

L =
1
2

rT M(q)r+
1
2

sT As

2

where A = BRD−1. Since B, R, D are diagonal, positive definite
matrices, A is positive definite.

The time derivative of the filtered error in the first step:

M(q)ṙ = M(q)(q̈d +Kpė)+C(q, q̇)(q̇d +Kpe)+g(q)−d`︸ ︷︷ ︸
f

−C(q, q̇)r+ yd− y︸ ︷︷ ︸
s

−yd

The time derivative of the transmission torque error:

Aṡ = A
[
ẏd−K(R−1

θ̇− q̇)
]
+BRq̈+R−1y−dm︸ ︷︷ ︸

h

−τ

Substituting yd in the first step, and the time derivatives
above. The time derivative of L is:

L̇ = 1
2 rT Ṁ(q)r+ rT M(q)ṙ+ sT Aṡ

= 1
2 rT Ṁ(q)r+ rT [f −C(q, q̇)r+ s− yd]+ sT (h− τ)

= rT (f − yd)+ sT (h+ r− τ)
= −rT Krr+ sT (h+ r− τ)

Letting τ = h+ r+Kss, where Ks ∈ RN×N is a positive def-
inite gain matrix. The time derivative of L is then negative defi-
nite.

L̇ = −rT Krr− sT Kss < 0

According to Lyapunov stability theory, the dynamical sys-
tem is asymptotically stable, thus limt→∞ r = 0, limt→∞ s = 0.
According to (4), limt→∞ e = 0.

To sum up, backstepping controller can be designed based
on an accurate model of the system as

yd = f +Krr (6a)
τ = h+ r+Kss (6b)

In this approach, two nonlinear functions f and h are represent-
ing the physical model of the dynamic system.

2.3 NN Based Adaptive Backstepping Control
The ideal backstepping controller (6a) and (6b) is imprac-

tical since the exact f and h terms are not available due to the
complexity of any real physical system. Moreover, though ẏd
and q̈ required in the calculation of h may be estimated using the
system model or by finite difference, the estimation could be dif-
ficult due to noise. One way to accommodate the uncertainty in f

and h is to add robust feature to the controller, but this approach
may not be able to make tracking error small if large uncertainty
exists. Another way is to use an auxiliary model that approxi-
mates the modeling error by an artificial NN.The backstepping
controller can then be designed as

yd = fn + f̂ +Krr (7a)

τ = hn + ĥ+ r+Kss (7b)

where fn and hn are the nominal system model terms obtained
using computer aided design software. f̂ and ĥ are the auxiliary
model terms that approximate the difference between the actual
system and the nominal model. The difference includes estima-
tion errors in the inertia parameters of the robot, estimation error
in the transmission units stiffness and damping parameters, un-
modeled complex frictions, and transmission errors.

Radial basis function (RBF) network, also known as the
functional-link neural network (FLNN) in [13], is chosen to build
this auxiliary model. The reason to use RBF network is that RBF
neural network has the ability to approximate an arbitrary nonlin-
ear function with very simple structure (only one hidden layer),
as shown in [14].

The terms f̂ and ĥ can be written as functions of X , where
X ≡

[
qd , q̇d , q̈d ,q,θ, q̇, θ̇

]T is the augmented state that includes
the reference trajectory {qd , q̇d , q̈d}. The auxiliary model can
then be formulated as

f̂ (X) = κ1
U
∑

i=1
wi

1φi(X) = κ1W T
1 Φ(X)

ĥ(X) = κ2
U
∑

i=1
wi

2φi(X) = κ2W T
2 Φ(X)

(8)

where κ1 ∈ R and κ2 ∈ R are two constant parameters that scale
the neural network weights. U is the number of neurons used in
the RBF network, and Φ(X)=

[
φ1(X), · · · ,φU (X)

]T is the vector
of activation functions. W1,W2 ∈RU×N are scaled weights of the
neural networks, where the ith column of the transposed weight
matrices W T

1 ,W T
2 ∈ RN×U are wi

1 and wi
2.

Gaussian radial basis function is one common choice for the
activation function in the RBF network. A Gaussian radial basis
function used in the ith neuron can be formulated as

φi(x) = exp
{
−1

2
(x−µi)

T
Λ
−1
i (x−µi)

}
(9)

where µi ∈ Rn is the center of the Gaussian radial basis function
φi(x), and Λi ∈ Rn×n can be called the width parameter. Choos-
ing the center and width of the Gaussian radial basis function
φi(x) will be introduced in the section 3 as the initial training

3

stage. After the center and width parameters are determined, the
weights of RBF network can be trained using adaptive control.
The adaptation law is designed as

Ẇ1 = F1κ1Φ(X)rT − γ1F1W1 (10a)

Ẇ2 = F2κ2Φ(X)sT − γ2F2W2 (10b)

where F1 ∈ RU×U and F2 ∈ RU×U are positive definite gain ma-
trices, γ1 ∈ R, and γ2 ∈ R are two extra gains. The uniform ulti-
mate boundedness, which has once been introduced by [13], will
be proved in section 4 for both tracking error and neural network
weights estimation error.

3 Two Stage Training Approach for Neural Network
The training of a RBF network using Gaussian radial basis

functions can be divided into two stages [15]. The first stage de-
termines the placements of the localized units, i.e. Gaussian units
in input space. The second stage then determines the weights of
a RBF network. In this paper, these two stages are called initial
training stage and online training stage.

3.1 Initial Training Stage
The centers of the Gaussian radial basis functions of a RBF

network should be uniformly and densely distributed in the do-
main of function to guarantee a small approximation error [13].
The width can then be chosen to be the maximum distance be-
tween adjacent centers. However, this is hard to realize by simple
discretization if the domain of function has high dimensionality
because too many neurons/radial basis functions are required to
cover the function domain. For example, in section 2.3, the input
to the RBF network X could be a 42 dimensional vector if N = 6.
Even only 2 levels are used for the discretization of each dimen-
sion, the required neuron number should be 242 ≈ 4.3980×1012,
which is even larger than the number of neurons in a human
brain.To avoid this problem, an alternative data-driven approach
is proposed in this section.

Since any trajectory of a robot can be parametrized by time
as X = X(t), the domain of function can be limited in a one-
dimensional manifold in the high dimensional function domain.
Instead of choosing centers in the high dimensional function do-
main, the centers can be determined in the low dimensional man-
ifold, as shown in Fig.2. The required number of neurons can
then be reduced.The center and width parameters can be first de-
termined in the low dimensional manifold using clustering ap-
proaches like k-means, as shown in [16], then transfer back to
the high dimensional space.

Suppose the dimension of the augmented state X is n, then
an experiment data set that contains H data points can be de-
noted as a H × n matrix as XS ≡ [X1,X2, · · · ,XH]

T . Principle

Center

Width

High dimensional space

Low-dimensional manifold

Figure 2. Distributing neurons / radial basis functions in the low-
dimensional manifold. Line: low-dimensional manifold. Points: centers
of radial basis functions. Ellipsoid: width of radial basis functions.

component analysis (PCA) can be implemented for dimension
reduction [17]. Let the singular value decomposition of XS be

XS = PSQT =
n

∑
i=1

piρiν
T
i (11)

where P = [p1, · · · , pH] is an H ×H orthogonal matrix, Q =
[ν1, · · · ,νn] is an n× n orthogonal matrix, and S is an H × n
diagonal matrix with S[i, i] = ρi, where ρi is the i-th singular
value of XS. Since XS is actually representing a low-dimensional
manifold, the first k(k < n) singular values will dominate, and
∀i > k,ρi ≈ 0. Thus the data set can be well approximated by a
low-rank approximation X̂Sk, as in [18],

X̂Sk =
k

∑
i=1

piρiν
T
i (12)

Though this approximation is only linear, k could still be
much smaller than n. This approximation projects all data points
approximately to a hyper plane spanned by {ν1, · · · ,νk}. The
center and width of the Gaussian radial basis functions can be
designed on the hyper plane then. The centers can be designed
to be uniformly distributed along the projection of the low di-
mensional manifold on the hyper plane, and the widths can be
designed to be constants. Suppose there are U neurons in the
neural network. Let the {µp1,µp2, · · · ,µpU} be the coordinates
of the centers of the Gaussian radial basis functions on the hy-
per plane, and the corresponding width parameters on the hyper
plane be {Λp1,Λp2, · · · ,ΛpU}. Let Qp ≡ [ν1,ν2, · · · ,νk]. The
centers {µ1, · · · ,µU} and the widths {Λ1, · · · ,ΛU} of the Gaus-
sian radial basis functions in the original n-dimensional space are

4

calculated as

{µ1, · · · ,µU} = {Qpµp1, · · · ,QpµpU}
{Λ1, · · · ,ΛU} = {QpΛp1QT

p , · · · ,QpΛpU QT
p}

(13)

3.2 Online Training Stage
After the initial training stage, the vector of activation func-

tions Φ(X) is determined. The weights W1 and W2 can then be
learned to minimize the difference between the nominal model
and the actual system.

The optimal RBF network weights W ∗1 and W ∗2 , which min-
imize the model difference can be defined as

W ∗1 = argmin
W1

(sup
X
‖ f (X)− fn(X)−κ1W T

1 Φ(X)‖)

W ∗2 = argmin
W2

(sup
X
‖h(X)−hn(X)−κ2W T

2 Φ(X)‖) (14)

Since the actual dynamic system model f and h are not
available, no supervised learning technique can be used to train
this neural network. Instead of using supervised learning tech-
niques, the RBF network weights W1 and W2 are trained using
adaptive control approach as (10a) and (10b) in this paper. It will
be proved in section 4 that the network weights are uniformly ul-
timately bounded.

4 Stability Analysis
This section shows the uniform ultimate boundedness of

both trajectory tracking error and the neural network weights.
This can be proved by showing the uniform ultimate bound-
edness of the filtered error r and the weight difference W̃1 =
W ∗1 −W1,W̃2 =W ∗2 −W2.

We introduce three assumptions. a) The domains of f is
compact and simply connected; b) the domain of h is compact
and simply connected; and c) f and h are continuous functions.
According to [13, 14], the universal approximation property of
radial basis function networks holds. This suggests that the opti-
mal approximation error should be bounded within the domains
of the functions, as

‖ε∗1‖ = ‖ f − fn−κ1W ∗T1 Φ(x)‖ ≤ εN1
‖ε∗2‖ = ‖h−hn−κ2W ∗T2 Φ(x)‖ ≤ εN2

(15)

where ε∗1 and ε∗2 are the optimal approximation errors, and εN1,
εN2 are the upper bounds of ε∗1 and ε∗2. Furthermore, κ1W ∗1 and
κ2W ∗2 can be chosen to be constant and bounded matrices, as

κ1‖W ∗1 ‖F ≤WB1
κ2‖W ∗2 ‖F ≤WB2

(16)

where ‖ · ‖F is the Frobenius norm; WB1 and WB2 are upper
bounds of the norm of neural network weights.

To analyse the stability, a Lyapunov function candidate can
be chosen as

V = 1
2 rT M(q)r+ 1

2 sT As+ 1
2 tr{W̃ T

1 F−1
1 W̃1}

+ 1
2 tr{W̃ T

2 F−1
2 W̃2}

(17)

where M(q) is the inertia matrix, r, s, and A are defined in sec-
tion 2.2, F1 and F2 are defined in the adaptation law (10a), (10b).
Since the optimal neural network weights W ∗1 and W ∗2 are con-
stant matrices,

˙̃W1 =−Ẇ1 (18a)
˙̃W2 =−Ẇ2 (18b)

With the proposed controller (7a), (7b), the proposed adap-
tation law (10a), (10b), and (18a), (18b), the time derivative of
the Lyapunov function candidate is

V̇ = 1
2 rT Ṁ(q)r+ rT M(q)ṙ+ sT Aṡ
+tr{W̃ T

1 F−1
1

˙̃W1}+ tr{W̃ T
2 F−1

2
˙̃W2}

= 1
2 rT [Ṁ(q)−2C(q, q̇)]r
−rT Krr+ rT ε∗1 +κ1rTW̃ T

1 Φ(X)
−sT Kss+ sT ε∗2 +κ2sTW̃ T

2 Φ(X)
−tr{κ1W̃ T

1 Φ(X)rT − γ1W̃ T
1 W1}

−tr{κ2W̃ T
2 Φ(X)rT − γ2W̃ T

2 W2}

Using the skew symmetric property of Ṁ(q)−2C(q, q̇), the lin-
earity of trace, and the property tr(AB) = tr(BA), the time deriva-
tive of V can be further manipulated as

V̇ = −rT Krr− sT Kss+ rT ε∗1 + sT ε∗2− γ1tr{W̃ T
1 W̃1}

+γ1tr{W ∗T1 W̃1}− γ2tr{W̃ T
2 W̃2}+ γ2tr{W ∗T2 W̃2}

= −
[

r
s

]T [Kr 0
0 Ks

][
r
s

]
+

[
r
s

]T [
ε∗1
ε∗2

]
− γ1tr{W̃ T

1 W̃1}

+γ1tr{W ∗T1 W̃1}− γ2tr{W̃ T
2 W̃2}+ γ2tr{W ∗T2 W̃2}

Let W v
i = [w1T

i , · · · ,wUT
i]T be the vectorized Wi(i = 1,2),

where W T
i ∈RN×U , w j

i is the jth column of W T
i . The time deriva-

tive of the V can be written as

V̇ =

r
s

W̃ v
1

W̃ v
2

T

ε∗1
ε∗2

γ1W ∗v1
γ2W ∗v2

−

r
s

W̃ v
1

W̃ v
2

T

Kr 0 0 0
0 Ks 0 0
0 0 γ1I 0
0 0 0 γ2I

r
s

W̃ v
1

W̃ v
2

 (19)

5

According to (15), the optimal neural network approxima-
tion error is bounded. According to (16), W ∗vi are bounded since

‖Wi‖F =
√

W vT
i W v

i = ‖W v
i ‖(i = 1,2). Then

∥∥[ε∗T1 ,ε∗T2 ,γ1W ∗vT
1 ,γ2W ∗vT

2]T
∥∥

=
√
‖ε∗1‖2 +‖ε∗2‖2 + γ2

1‖W ∗v1 ‖2 + γ2
2‖W ∗v2 ‖2

≤
√

ε2
N1 + ε2

N2 + γ2
1W 2

B1/κ2
1 + γ2

2W 2
B2/κ2

2

, bε

Let σl be

σl = min
‖x‖=1

xT

Kr 0 0 0
0 Ks 0 0
0 0 γ1I 0
0 0 0 γ2I

x > 0

Let η , [rT ,sT ,W̃ vT
1 ,W̃ vT

2]T . Then from (19),

V̇ ≤ −σl
∥∥η
∥∥2

+bε

∥∥η
∥∥

=
∥∥η
∥∥(bε−σl

∥∥η
∥∥)

Therefore

V̇ ≤−δ‖η‖< 0,∀‖η‖ ≥ (bε +δ)/σl > 0 (20)

where δ > 0 can be any small number.
In addition, according to [13], M(q) is positive definite

and bounded, thus the Lyapunov function candidate V can be
bounded by quadratic functions.

0 < σ1‖η‖2 ≤V ≤ σ2‖η‖2 (21)

where σ1 is a positive number smaller than one half of the mini-
mum singular values of M(q), A, F−1

1 , F−1
2 , and σ2 is a positive

number larger than one half of the maximum singular values of
the four gain matrices.

Ref to [13] and [19], uniform ultimate boundedness of η can
be guaranteed by (20) and (21). Thus there exists t0, such that
∀t ≥ t0,‖η‖ ≤

√
σ2
σ1

bε+δ

σl
. Since δ can be any small number, this

inequality is reduced to ‖η‖ ≤
√

σ2
σ1

bε

σl
eventually. This upper

bound of η can be made arbitrarily small by increasing Kr, Ks,
κ1, κ2, and decreasing γ1, γ2. Thus the trajectory tracking error e

and neural network weight estimation error W̃1,W̃2 are uniformly
ultimately bounded as (i = 1,2)

‖e‖ ≤ ‖r‖
σmin(Kp)

≤ ‖η‖
σmin(Kp)

≤ 1
σmin(Kp)

√
σ2

σ1

bε

σl
(22a)

‖W̃i‖F ≤ ‖η‖ ≤
√

σ2

σ1

bε

σl
(22b)

5 Simulation Results
The proposed controller is implemented to control a 6-axis

robot in simulation. In the simulation, rigid body dynamics of
the robot, joint flexibility, motor dynamics, complex friction are
all taken into account. The reference trajectory in the simulation
is designed to have high velocity and acceleration. The reference
trajectory is illustrated in Fig. 3, and the acceleration is shown in
Fig. 4.

A benchmark controller for industrial robot and the pro-
posed controller are implemented in the simulation. Nominal
dynamical model are used in both controllers. The modelling er-
ror includes: a) link inertia and center-of-gravity; b) friction; c)
stiffness and damping of transmission units.

-0.5

Reference Trajectory of 6-Axis Indirect Drive Robot

0

X [m]
0.5

10.5

0
Y [m]

0

0.5

1

1.5

-0.5

Z
 [m

]

Initial Configuration Target Configuration

Figure 3. Reference trajectory of 6-axis indirect drive robot

The benchmark controller consists of two parts: torque
feedforward control part and feedback control part. The feed-
forward part utilizes a nominal rigid body dynamics model
of the robot to compensate the nonlinear dynamics of the 6-
axis robot. The feedback control part utilizes a well tuned
proportional−integral−derivative (PID) controller. The bench-

6

Time [s]

0 0.5 1 1.5

A
c
c
e

le
ra

ti
o

n
 [

m
/s

2
]

-6

-4

-2

0

2

4

6

8
Acceleration of Reference Trajectory in Cartesian Space

x

y

z

Figure 4. Acceleration of the reference trajectory in Cartesian space

mark controller has the form

τ = R−1 [(Mn(qd)+BnR2)q̈d +Cn(qd , q̇d)q̇d +gn(qd)
]

+KP(Rqd−θ)+KD(Rq̇d− θ̇)+KI

∫ t

0
(Rqd−θ)

where the subscript n denotes the nominal model. KP, KD, and
KI are the PID gains.

The proposed neuroadaptive controller is designed as (7a),
(7b). Two iterations are required for this approach. The first
iteration is mainly used to collect data for designing center and
width of each Gaussian basis function in the RBF network. In
the first iteration, only the nominal model is used and there is no
auxiliary model available, i.e., in the first iteration,

yd = fn +Krr

τ = hn + r+Kss

For the second iteration of the proposed controller, RBF net-
work is used to build the auxiliary model as (8). In the second
iteration, both nominal model and auxiliary model are used in
the controller,

yd = fn +κ1W T
1 Φ(X)+Krr

τ = hn +κ2W T
2 Φ(X)+ r+Kss

The data from the first iteration is used in the initial train-
ing stage before running the second iteration, i.e. determining
the center and width parameters for the RBF network. 50 neu-
rons are used in this neural network. The 2-D projection of cen-
ter and width of the radial basis functions are shown in Fig. 5.
The online training stage takes place during the second iteration.

The neural network weights are trained adaptively as designed in
(10a) and (10b).

v
1

-200 -100 0 100

v
2

0

50

100

150

200

250

Center Width

Figure 5. Low dimensional manifold from experiment data with designed
center and width of radial basis functions.

Time [s]

0 0.5 1 1.5

T
ra

c
k
in

g
 E

rr
o
r

[m
m

]

-2

0

2

4

6
X Direction Tracking Error

benchmark

1
st

 iter, proposed

2
nd

 iter, proposed

Figure 6. Cartesian space tracking error in X direction

The trajectory tracking for the benchmark controller and the
proposed controller are shown in Fig. 6, 7, and 8. Due to mod-
elling error, the trajectory tracking error is large for the bench-
mark controller and the first iteration of the proposed controller.
But the error is effectively reduced in the second iteration.

6 Conclusion
In this paper, a neural network based adaptive backstepping

control approach is proposed to improve trajectory tracking ac-
curacy of indirect drive robots. Artificial neural network is used
to approximate the difference of actual system and the physical
model used for control. A two stage training approach, which
consists of an offline data-driven initial training stage and an on-
line training stage, was proposed to train the radial basis func-
tion network used in the controller. In the initial training stage,

7

Time [s]

0 0.5 1 1.5

T
ra

c
k
in

g
 E

rr
o
r

[m
m

]

-4

-2

0

2

4

6
Y Direction Tracking Error

benchmark

1
st

 iter, proposed

2
nd

 iter, proposed

Figure 7. Cartesian space tracking error in Y direction

Time [s]

0 0.5 1 1.5

T
ra

c
k
in

g
 E

rr
o
r

[m
m

]

-1

0

1

2

3

4
Z Direction Tracking Error

benchmark

1
st

 iter, proposed

2
nd

 iter, proposed

Figure 8. Cartesian space tracking error in Z direction

a model based backstepping controller is first implemented for
data collection. The center and width parameters of neurons are
then designed based on the motion data. In the second stage, the
same trajectory is used and the weights of neural network are
tuned online to improve the controller performance. Comparing
to other learning control techniques like iterative learning con-
trol, the approach proposed in this paper requires only at most
two iterations for a specific trajectory, which is more efficient.
It is proved that the trajectory tracking error and the neural net-
work weight estimation error are uniform ultimate bounded. The
effectiveness of the proposed controller is demonstrated using
simulation on a six axis indirect drive robot.

REFERENCES
[1] Litak, G., and Friswell, M. I., 2003. “Vibration in gear

systems”. Chaos, Solitons & Fractals, 16(5), pp. 795–800.
[2] De Luca, A., and Book, W., 2008. “Robots with flexible

elements”. In Springer Handbook of Robotics. Springer,
pp. 287–319.

[3] De Luca, A., and Lucibello, P., 1998. “A general algo-
rithm for dynamic feedback linearization of robots with

elastic joints”. In Robotics and Automation, 1998. Pro-
ceedings. 1998 IEEE International Conference on, Vol. 1,
IEEE, pp. 504–510.

[4] Spong, M., Khorasani, K., and Kokotovic, P. V., 1987. “An
integral manifold approach to the feedback control of flex-
ible joint robots”. IEEE Journal on Robotics and Automa-
tion, 3(4), pp. 291–300.

[5] De Luca, A., 2000. “Feedforward/feedback laws for the
control of flexible robots”. In Robotics and Automation,
2000. Proceedings. ICRA’00. IEEE International Confer-
ence on, Vol. 1, IEEE, pp. 233–240.

[6] Chen, W., and Tomizuka, M., 2014. “Dual-stage itera-
tive learning control for mimo mismatched system with ap-
plication to robots with joint elasticity”. Control Systems
Technology, IEEE Transactions on, 22(4), pp. 1350–1361.

[7] Wang, C., Zhao, Y., Chen, Y., and Tomizuka, M., 2015.
“Nonparametric statistical learning control of robot manip-
ulators for trajectory or contour tracking”. Robotics and
Computer-Integrated Manufacturing, 35, pp. 96–103.

[8] Spong, M. W., 1987. “Modeling and control of elastic joint
robots”. Journal of dynamic systems, measurement, and
control, 109(4), pp. 310–318.

[9] de Wit, C. C., Siciliano, B., and Bastin, G., 2012. Theory
of robot control. Springer Science & Business Media.

[10] Gandhi, P. S., 2001. “Modeling and control of nonlinear
transmission attributes in harmonic drive systems”. PhD
thesis, Rice University.

[11] Han, C.-H., Wang, C.-C., and Tomizuka, M., 2008. “Sup-
pression of vibration due to transmission error of harmonic
drives using peak filter with acceleration feedback”. In Ad-
vanced Motion Control, 2008. AMC’08. 10th IEEE Inter-
national Workshop on, pp. 182–187.

[12] Kokotovic, P. V., 1992. “The joy of feedback: nonlinear
and adaptive”. IEEE Control systems, 12(3), pp. 7–17.

[13] Lewis, F., Jagannathan, S., and Yesildirak, A., 1998. Neu-
ral network control of robot manipulators and non-linear
systems. CRC Press.

[14] Park, J., and Sandberg, I. W., 1991. “Universal approxima-
tion using radial-basis-function networks”. Neural compu-
tation, 3(2), pp. 246–257.

[15] Fritzke, B., 1994. “Fast learning with incremental rbf net-
works”. Neural processing letters, 1(1), pp. 2–5.

[16] Friedman, J., Hastie, T., and Tibshirani, R., 2001. The el-
ements of statistical learning, Vol. 1. Springer series in
statistics Springer, Berlin.

[17] Jolliffe, I., 2002. Principal component analysis. Wiley
Online Library.

[18] Calafiore, G., and El Ghaoui, L., 2014. Optimization Mod-
els. Control systems and optimization series. Cambridge
University Press, October.

[19] Khalil, H. K., and Grizzle, J., 2002. Nonlinear systems, vol.
3, Vol. 8. Prentice hall Upper Saddle River, pp. 168–174.

8

